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Abstract 

Resilience to stressors has emerged as a major gerontological concept aiming to promote more 

positive outcomes for older adults. Achieving this aim relies on determining mechanisms 

underlying capacity to respond resiliently. This paper seeks proof of principle for the hypothesis 

that physical aspects of said capacity are rooted in the fitness of one’s physiology governing 

stress response, conceptualized as a dynamical system.  

The Study of Physical Resilience in Aging (“SPRING”) leveraged stimulus-response 

experiments to characterize physiological fitness in older adults scheduled for one of three major 

stressors: Total knee replacement, incident hemodialysis, or bone marrow transplant in 

hematological cancer. Here we analyze Holter monitor time series, cortisol responses to 

adrenocorticotropic hormone (ACTH) stimulation, and repeated diurnal salivary cortisol 

assessment in the SPRING pilot (n=79). Principal components analysis was applied anticipating 

steady-state and “adaptation” mechanisms underlying the repeated physiological measures. 

Analytic features evidenced these mechanisms, supporting construct validity. Component scores 

were analyzed by major stressor, hypothesized surrogate physiologic measures (physical frailty 

phenotype, self-report of health), and demographic, health and behavioral characteristics. Scores 

differed substantially by stressor type and the surrogate physiologic measures, evidencing 

criterion validity.    

Our data support that HRV, ACTH and salivary cortisol stimulus-response data jointly assess 

adaptation capacity across a variety of major stressors. We believe that SPRING is the first study 

in humans to concurrently query multiple physiologic systems using stimulus-response tests. Our 



findings lay groundwork for future validation with further data and to better forecast resilience of 

older adults to clinical stressors.  

Keywords: Stress response, Autonomic nervous system, Frailty, Hypothalamic-pituitary axis, 

Principal components analysis  



INTRODUCTION 

Two adults of comparably late-life age and apparent health experience the same stressor. One 

soon rebounds, whereas the other is beset by a cascade of adverse events and suffers irreversible 

decline of health. How can we explain the different responses? What might be done to promote 

more consistently positive outcomes? These are the hallmark questions of aging. Recent 

conversations in gerontology have highlighted frailty and resilience as lenses by which to 

address them. Physical frailty—a state of global vulnerability to stressors (1), and physical 

resiliencies—ability to rebound from specific stressors (2)—have been theorized to arise in 

major part from the fitness of one’s physiology governing stress response, energy production, 

and musculoskeletal integrity (3-6). Henceforth, we term this proposition as the “physiological 

fitness hypothesis”. The physiology at issue is complex, but its consideration as a multi-

component dynamical system might make feasible derivation of a few features largely 

determining its frailty and resilience (7). If the physiological fitness hypothesis were to be borne 

out, and then operationalized in clinically relevant measures, this could revolutionize health 

promotion and care for older adults. Older adults susceptible to planned stressors—such as 

scheduled clinical procedures—could be identified, and care management be designed 

accordingly. Long-term tuning of the physiology might forestall precipitous decline, 

vulnerability, and adverse outcomes to near the end of life.  

Such a theory and approach have been well discussed, with many papers evaluating associations 

of single static physiologic measures with frailty and several evaluating associations of multiple 

static physiologic measures with frailty at a time (8-10). However, there has been little 

evaluation of physiologic fitness in humans using dynamic paradigms in which a stimulus is 

applied and a time series in response is observed, despite that this is the only way that physiology 



can be studied as a dynamical system (11) and calls to do so were issued decades ago (12,13). 

One reason why is that such a paradigm is an intensive prospect in studies engaging humans and 

particularly older adults. The Women’s Health and Aging Studies (WHAS) I and II assessed 

heart rate variability (HRV) by Holter monitor (14) and 12-hour at-home salivary cortisol 

trajectories (15)—considering daily life as the provocation; these were performed in distinct 

subsets (HRV in WHAS I, salivary cortisol in WHAS II). Several years later, WHAS II also 

implemented a series of stimulus-response tests after its seventh study wave (16-18), finding 

intriguing but inconsistent hints of relationship to frail status. These studies were limited by 

small sample size and insufficient overlap in persons receiving various tests, preventing any 

cross-system analyses. Responding to the sparsity of the published evidence base, the National 

Institute on Aging (NIA) in 2016 issued a call for research implementing stimulus-response 

measures to distinguish older adults likely to prove resilient, or not, to forthcoming physical 

stressors, and identify determinants of these response types. This paper reports findings from a 

study which arose in response, the Study of Physical Resilience in agING (SPRING; 19).  

The SPRING built on the stimulus-response testing begun in the WHAS.  SPRING was designed 

to apply a battery of dynamic stimulus tests in older adults shortly scheduled for planned clinical 

stressors—total knee replacement, hemodialysis initiation and bone marrow transplant—in order 

to evaluate (i) the physiological fitness hypothesis with respect to resilience to these stressors, 

and (ii) the utility of stimulus-response data collection and analysis to accomplish (i). Leveraging 

data from the SPRING pilot study, this paper seeks to provide, or contradict, proof of principle 

for the utility of dynamic stimulation data. It will then fall to the primary SPRING study to 

validate our finding and address (i) above. 



In sections to follow, we first further elucidate our idealized conceptual framework as well as a 

simplification to accommodate data feasibly obtainable in our study setting. We then outline the 

SPRING study and dynamic stimulus measures and conduct analyses to validate a subset of our 

dynamic stimulus measures with respect to our conceptual framework. Our report seeks to 

demonstrate the measures’ potential to reflect underlying physiological system fitness and 

functioning.  

METHODS 

Conceptual framework. The SPRING conceptual framework is centered on “Physiologic 

Resilience capacity”— or physiologic fitness as termed in the prior section (19; reproduced for 

convenience in eFigure 1 in the Supplement). This construct represents “capacity” to respond to 

a stressor soon to be experienced. As articulated in a previous article, we hypothesize that this 

capacity is rooted in key inter-connected physiological systems that together maintain bodily 

homeostasis, including energy regulation systems, the autonomic nervous system, and the innate 

immune system (3). Also as per that article, we regard the anatomy, functions, and 

interconnections of these components together as comprising a complex dynamical system—

dynamical because the state of the system changes over time, and complex because the 

component parts interact in “non-simple” ways which generate synergies, evolution, and 

responses to stimuli that are difficult to infer from the states of the parts (5,20). 

Physiologic resilience conceptualized as such cannot be observed directly, but rather must be 

inferred through indirect assessments—labeled in eFigure 1 as “Dynamic stimulation tests” 

(topic of the present paper) and “Surrogate measures” (static indicators). In the ideal, complex 

dynamical systems can be characterized by differential equations governing their interactions 

and evolution (21). If time-series data on the states-changes just before and following 



provocation could be collected, the model parameters might be inferred. Given the focus on 

resilience, such data should establish steady-state, response to a stimulus, and return toward 

steady-state (7).  

Given the moderate sample size in the SPRING pilot and the temporally coarse data that proved 

feasible to collect while avoiding the imposition of excessive burden on older adults 

experiencing major life stressors, this paper reports a simplified systems characterization 

approach. We conceptualized two key features in a stimulus-response setting: the system’s 

“steady-state” and its “adaptation” capacity. This approach has proven productive in prior studies 

of physiological system functioning in aging, including the innate immune system (22-23), 

autonomic nervous system (24), and HPA axis (15). 

Study design. The SPRING study aims to develop a framework by which to identify clinically 

relevant signatures of resiliency in older adults undergoing physical (clinical) stressors, generate 

new validated measures by which to identify individuals with impaired capacity for resilience to 

stressors, and advance a deeper knowledge of the age-related biological changes that impair 

stress response systems. It seeks ultimately to open the way for the development of novel 

interventions to improve care management for older adults facing stressful clinical procedures.  

The study design has been detailed separately (19). In brief, there was a first, pilot phase to 

prioritize measures, define phenotypes and refine study protocols followed by a second phase 

study designed to evaluate the physiological fitness hypothesis, determine predictive utility of 

dynamic stimulus measures, and study the biology underlying physical resilience. This paper 

concerns the first phase. In both first and second phases, three clinical stressors were studied: 

Total knee replacement, dialysis initiation at onset of end stage renal disease, and bone marrow 

transplant for hematological cancers. Substudies addressing each stressor were designated as the 



RESilience in TOtal knee Replacement (RESTORE), Resiliency in Dialysis Initiation (ReDI), 

and REsiliency in older adults UNDergoing BOne marrow transplant (REBOUND) studies. In 

the pilot phase 20-30 patients were recruited per substudy. At a baseline evaluation scheduled to 

shortly precede the stressor, they were evaluated by a large battery of measures whose types are 

outlined in Figure 1: Follow up evaluations primarily of resilience phenotypes and outcomes 

were implemented at 1-3 months and 4-6 months (one each) depending on the clinical flow for 

the particular stressor. This paper is focused on the baseline data addressing physiological 

resilience capacity.  

Dynamic Resilience Capacity Measures. As previously described, SPRING performed seven 

stimulus-response experiments with participants, designed to query energy metabolism, the 

hypothalamic pituitary adrenal (HPA) axis, autonomic nervous system (ANS) functioning, and 

innate immune system activation (19). Only a subset of the resulting measures is available to our 

analysis due to designed partial deployment of some measures in the first SPRING phase. We 

focus on three measures assessing the HPA axis and ANS that were widely implemented across 

all three pilot substudies:  

Holter ECG monitoring and heart rate variability analysis: During each participant’s 

baseline assessment, a myPatch Holter monitor was attached to the chest using standardized 

placement procedures. Patient information and start times were inputted. The recorder’s capacity 

to mark specific events by tapping on it was used to note the start times of any specific tests 

during the visit. Each recording stored a 3-channel, digitized ECG signal sampled at 1000 

Hz. The monitor was removed at the end of the study visit—usually 2-3 hours after attachment.  

The stored Holter data were analyzed to research standards (25) by a Holter technician using 

Cardioscan software developed specifically to interface with the 3-channel myPatch 



recording. The software detects the onset and morphology of each heartbeat on the recording—a 

process optimized by the technician based on examination of the ECG strips which display the 

beat label (e.g., N for “normal”, S for “supraventricular”, V for “ventricular”, U for “unclassified 

or misdetected onset”, or Z for “artifact”) and the time in ms since the last detected "beat." 

Optimization includes reanalysis on a different channel or changing the amplitude of a 

channel.  Heart-rate variability (HRV) is calculated from normal-to-normal (N-N) intervals only, 

hence it is important to accurately identify these intervals (keyed to the R-wave peak). The 

longest and shortest N-N interval are identified, so that all intervals outside this range are 

automatically excluded from HRV calculations. A tachogram of instantaneous heart rates, plot of 

hourly HRV power spectra and scatterplots of each NN interval versus the next are generated to 

visualize heart rate patterns. Once quality has been assured via the procedures just described, a 

standard set of HRV values, time domain, frequency domain, and non-linear measures are 

generated.  

Adrenocorticotropic hormone (ACTH) stimulation test: This test was performed in the 

morning in an onsite clinic visit, with or without fasting. Starting times varied between 8 to 10 

am. Blood samples were drawn prior to initiation and at 30 and 60 minutes after injection of 

cosyntropin.  Persons taking an oral glucocorticoid were excluded. Plasma cortisol levels were 

measured using a radioimmunoassay (ALPCO, Salem, NH). The inter- and intra-assay 

coefficients of variation for cortisol using this assay were 6.30% and 4.65%, respectively. 

Diurnal salivary cortisol data collection:  Participants were sent home from the research unit 

with a saliva collection kit that included instructions on saliva sample collection and return. 

Participants were asked to collect saliva at the following times: upon waking/ before eating, 11 

a.m., 4 p.m. and just before bedtime, and to record the time of each collection. Salivary cortisol 



levels were measured using enzyme-linked immunosorbent assay (Salimetrics, Carlsbad, CA). 

The inter- and intra-assay coefficients of variation for cortisol using this assay were 3.00% and 

2.98%, respectively. 

Modeling approach for the dynamic physiologic data. For each of the three tests just described, 

we defined metrics that we hypothesized to reflect steady-state functioning and adaptation, to be 

carried forward for further analysis. In each case, “steady-state” refers to the average functioning 

of the system over the course of the observation time, whereas “adaptation” refers to variation 

reflecting response to stressors—each in a sense defined further below per test to be examined:  

HRV steady-state and adaptation: In the WHAS Holter Monitor study outlined above, 

principal components analysis was applied to summarize key HRV metrics using data from 

WHAS I and, separately, from the Framingham Heart Study (FHS; 24). We computed two 

components using the coefficients for the FHS solution. These measures summarize heart rate 

power in the very low (<0.04 Hz), low (0.04-0.15 Hz), and high (0.15-0.40 Hz) frequency 

domains as well as standard deviation of N-N intervals (SDNN), root-mean-squared differences 

of successive N-N intervals (RMSSD), and the proportion of N-N intervals larger than 50 ms 

(pNN50). The first component (“FPC1”) is essentially an average of the six standardized metrics, 

reflective of heart rate functioning in steady-state. The second component (“FPC2”) contrasts 

very low/low with high frequency power as well as SDNN versus RMSSD and pNN50, 

reflective of adaptive regulation. The reference publication’s authors interpreted higher values of 

FPC2 as reflective of healthier heart functioning. 

ACTH steady-state: Area under the curve (AUC) defined by cortisol measurements at times 0, 

30 minutes and 60 minutes was calculated by trapezoidal rule. Because the raw cortisol 

measurements were employed, rather than displacements from the time-0 cortisol measurement, 



these AUC values were highly correlated with the time-0 cortisol measurement. We opted for the 

AUC values, which combine 3 measurements together, seeking to reduce measurement error.   

ACTH adaptation: Recovery was defined as the ratio of the 60-minute measurement to the 

time-0 measurement. Commensurate with a cortisol surge following cosyntropin administration 

and then a return to baseline, the ratio of measurements at time t versus time 0 is expected to 

exceed 1 at times shortly after baseline and then return to a value near 1. Thus, smaller (closer to 

1) versus larger values at 60 minutes reflect more complete recovery, and values of 1 indicate 

complete recovery. This measurement was highly positively skewed: a logarithm-of-logarithm 

transformation of values succeeded in approximately normalizing it. Log-log values were 

employed for all statistical analyses.  

Salivary cortisol steady-state: To represent this, we computed the mean cortisol over the four 

administration times (in nmol/L). Logarithm values were employed for all statistical analyses: 

this transformation approximately normalized the distribution.  

Salivary cortisol adaptation: Peak-nadir ratio was defined as the largest divided by the lowest 

of the four cortisol measures per person. Logarithm values were employed for all statistical 

analyses; this transformation approximately normalized the distribution.  

Hypothesized determinants. We sought to explore relationships of physiologic measures to key 

demographic and health-related determinants we hypothesized to underlie resilience capacity in 

the initial development of our project. Current age in years was self-reported during screening 

and verified by the participant during the baseline visit. Sex and race/ethnicity were self-

reported, as were smoking history, drinking over the last month, and participation in exercise. 

Participants were queried as to whether a doctor ever had told them they had each of the 



following diseases: myocardial infarction, congestive heart failure, angina, chronic pulmonary 

disease (chronic bronchitis, emphysema, COPD), asthma, liver disease,  renal disease, stroke, 

transient ischemic attack, peripheral neuropathy, hypertension, diabetes, cancer, arthritis, spinal 

stenosis, osteoporosis, Parkinson’s disease, PAD, venous disease, gastrointestinal ulcer); to 

balance meaningfulness with adequate counts, number of diseases were dichotomized as 0-2 

versus 3 or more. Medication information was collected from the electronic medical record and 

then reviewed with the participant at a baseline visit to verify accuracy; reported number of 

medications was dichotomized as 0-4 versus 5 or more. BMI was calculated using height and 

weight assessed by a trained technician during the study visit.  

In addition, we evaluated the associations of the physiologic metrics with the three primary 

surrogate measures of physiologic resilience capacity hypothesized for the study (eFigure 1 in 

the Supplement)—frailty, current self-report of health (SRH), and perceived change in health 

status over the last year. Frailty was assessed in person during a clinic-based study visit 

according to the physical frailty phenotype as it was implemented in the Women’s Health and 

Aging Study (26). Self-perception of health (poor, fair, good, very good, excellent), and 

perceived change in self-reported health over the last year (much better, somewhat better, about 

the same, somewhat worse, much worse) were assessed via self-report. All three were assessed at 

the study baseline. 

Data analysis. Study variables were summarized by study, using median (IQR) for continuous 

variables and percentages for categorical variables. Scatterplots among the physiologic metrics 

were examined, coded by study.  

We then proceeded to analyze the HRV, ACTH stimulation, and salivary cortisol data according 

to our conceptual framework, pooled across substudies. We implemented correlation-based 



principal components analysis (PCA) of steady-state and adaptation metrics for the three tests—a 

total of six metrics. Such an analysis assigns sets of weights—i.e., coefficients—to persons’ 

multiple z-score standardized dynamic test metrics in such a way that the successive weighted 

combinations of metrics have highest possible variance while being uncorrelated with previous 

combinations in the set, thus most efficiently distinguish individuals. Following standard 

terminology, we henceforth label the successive combinations as “components,” their weighted 

average values as “scores,” and the weights (coefficients) as “loadings.” A frequent goal is to 

account for shared covariation among metrics being analyzed by only a few components: We 

hypothesized two components to suffice for our metrics—reflecting systemic steady-state and 

adaptation capacity. We employed parallel analysis to estimate the number of components 

reflecting shared variation—a method that employs simulation assuming no shared covariation 

as a benchmark, and hence avoids overfitting (27). The remaining components are then 

hypothesized to reflect unshared, measure-specific variation or noise. The sum of the component 

variances in a PCA matches the sum of the individual variable variances: the ratio of a given 

component variance to the overall sum is denoted as its “proportion of variance explained.”   

As described above, metrics were transformed for approximately normal distribution prior to 

analysis. Doing so aimed to maximize interpretability of correlations and assist in 

accommodating missing data (next paragraph). We sought to interpret loading patterns within 

components as consistent or inconsistent with steady-state and adaptation, hence Varimax 

rotation was applied to potentially enhance interpretability. This method maximizes loading 

distinctions within components. We report loadings normalized so that squared values sum to 1: 

For interpretation, we highlight those loadings whose squared values are higher by a factor of 2 

than remaining others as the ones that contribute dominantly to a component score. 



Analysis was performed in stages. We first analyzed the complete-case data. Then, considering 

an appreciable proportion of data missing item-wise in the six continuously scaled metrics, 

multiple imputation was applied using multivariate normal-based Markov Chain Monte Carlo 

(MCMC, using Stata function mi imput mvn, version 17 SE; 28) to produce ten dataset replicates 

filling missing data randomly, using a predictive model. First, datasets were PC-analyzed in 

parallel. We then synthesized over imputations by performing PCA on the mean HRV, ACTH 

and salivary cortisol metrics (steady-state, adaptation for each; total of 6 metric means) over 

replicates. Scores were computed by applying the resulting loadings to the z-transformed metric 

values.  

A final analysis aimed to characterize associations between surrogate measures of physiologic 

resilience and PC scores, as well as baseline determinants and PC scores. Each score was related 

to each covariate using linear regression. Crude associations and associations adjusted for 

SPRING substudy were evaluated. SPRING substudy proved strongly associated with PC scores: 

We also performed substudy-adjusted analyses restricted to the overlapping range of PC scores 

represented in all three studies. Scores for the second PC included 3 extreme outliers—one from 

each substudy: A sensitivity analysis eliminated these from the model adjusting for substudy.  

RESULTS  

Seventy-nine older adults participated in the SPRING pilot – 23 in RESTORE, 22 in REDI and 

34 in REBOUND (Table 1). Demographic characteristics varied widely between the substudies: 

RESTORE participants were majority female and majority white; REDI participants, majority 

male and majority non-white; and REBOUND participants, majority male and nearly all white. 

Health characteristics also varied, with RESTORE and REDI participants substantially more 

likely than REBOUND participants to be highly multimorbid, take many medications, and be 



prefrail or frail. RESTORE participants had considerably higher median BMI and proportions 

reporting improved health in the last year than those in the other substudies; REDI participants 

reported the worst current health. Among health behaviors the most striking heterogeneity was 

observed for exercise, which was endorsed by only 14% of REBOUND participants as compared 

to more than 40% of RESTORE and REDI participants. In all, the data suggest that the 

populations undergoing the respective stressors we studied are quite distinct. 

The six physiological functioning metrics also are described in Table 1 as well as Figure 1—the 

latter, presenting scatterplots of the measures against one another as well as distributions 

stratified by substudy. Focusing on Figure 1: REDI distributions consistently differed from those 

in the other two studies, most notably comprising the poorest HRV adaptation (lowest FPC2) and 

salivary cortisol steady-state (highest mean cortisol) values and lacking representation in the 

better part of the salivary cortisol adaptation (higher peak-nadir ratio) range. Scatterplots 

demonstrate that transformations primarily succeeded in regularizing the data and, more 

substantively, associations among the measures were negligible to mild (correlations ranging 

from -0.25 to 0.30). The Table 1 footnote reports that appreciable data were missing for each 

measure—typically, 10-30% depending on the study but as high as 40% for HRV in REBOUND.  

Principal components analysis was applied to the six (transformed) dynamic measure metrics, 

beginning with complete-case data (Table 2, Complete-cases column). Two components were 

rotated: These proved consistent with the steady-state / adaptation theory, with a first component 

(“PC1”) most highly loaded on two of the adaptation metrics (HRV, salivary cortisol) and a 

second component (“PC2”) most highly loaded two of the steady-state metrics (HRV, ACTH). 

Jointly they explained 46% of the variance. Three components, jointly explaining 65% of the 

variance, had eigenvalues greater than 1: Both component patterns noted above were 



recapitulated, and an additional component contrasted the salivary cortisol steady-state measure 

versus the ACTH adaptation measure (eTable 1 in the Supplement; recall that lower ACTH 

adaptation values reflect better functioning). Despite the encouraging loading patterns and 

variance explained, the parallel method could not distinguish the correlation pattern observed 

from an underlying absence of covariation (eFigure 2 in the Supplement). This was not 

surprising with the small complete-case sample available (n=44), and we proceeded to analyze 

data multiply imputed 10 times (n=79 per imputed replicate).  

Parallel analysis for PCA of the mean HRV, ACTH and salivary cortisol metrics over replicates 

suggested 2 components of shared variation (eFigure2). Table 2 reports loadings: Predominant 

patterns reported for complete-case analysis were recapitulated. Imputation-specific analyses are 

detailed in the eMethods and in eTable 2 in the Supplement: the number of components 

identified by parallel analysis varied across replicates, but most frequently this was either two (5 

replicates) or three (3 replicates), and in each of these cases, dimensions involving multi-measure 

steady-state, adaptation, or their contrast were identified. We created PC scores synthesizing 

replicates as described in the Methods section/Data analysis. Also described in the eMethods in 

the Supplement is a sensitivity analysis using a second method to create synthetic PC scores, 

which agreed closely with the primary method.   

In addressing potential determinants of physiological functioning, we first contrasted the mean-

derived PC distributions by SPRING substudy (Figure 2, top left). Substantial distributional 

differences were evident, particularly strongly contrasting REDI participants versus the other two 

substudies. In a linear regression of PC scores on substudy, the mean REDI PC1 score was more 

than a point lower than in RESTORE (95% CI -1.76 to -0.49) and 1.5 points lower than in 

REBOUND (95% CI -2.17 to -1.01). Mean differences in PC2 scores were less (smaller than 0.3 



points between the maximum, in RESTORE, and the minimum, in REDI, with 95% CIs largely 

overlapping 0), but REDI scores were strongly bimodal with major mode highest among the 

studies (Figure 2). We approximated the overlapping ranges, respectively, as -1.5 to 0.18 for PC1 

(n=36) and -1.0 to 1.7 for PC2 (n=61). To facilitate interpretation, also shown in Figure 2 are 

three z-score averages approximating the 3 component solution shown in Table 2: of (i) the 

salivary cortisol steady-state measure and the ACTH adaptation measure; (ii) the HRV and 

salivary cortisol adaptation measures, and (iii) the HRV and ACTH steady-state measures. High 

concordance was observed between (ii) and PC1, and between (iii) and PC2.  

Regressions of PC scores on the hypothesized surrogate measures of physiologic fitness are 

summarized in Table 3. Robust (as opposed to prefrail or frail) status on the physical frailty 

phenotype was associated with substantially higher scores on both PCs—crudely, and after 

adjustment for substudy (in this latter case, an estimated mean difference of 0.61 for 

PC1=adaptation, 95% CI 0.12 to 1.11, and of 0.60 for PC2=steady-state, 95% CI 0.01 to 1.18). 

These are shifts of approximately half a standard deviation for each PC. The magnitude of the 

mean difference was attenuated in the analysis restricting to the range of overlap—this is as 

expected, given the reduced range of scores in this analysis: Confidence intervals nonetheless 

remained in the largely positive range (estimated mean difference of 0.33 for PC1, 95% CI -0.03 

to 0.68, and of 0.26 for PC2, 95% CI of -0.13 to 0.65). Self-reported health was similarly 

strongly associated with PC2 scores, with 0.6-1 point mean PC score reductions for good and 

fair/poor health, respectively, compared to excellent/very good. Fair/poor status was crudely 

highly associated with reduced PC1 scores, but the association was substantially attenuated after 

adjustment for substudy. Self-rating of somewhat/much worse health as compared to the 

previous year showed a similar pattern of association with PC2 scores as did self-reported health, 



but with smaller estimates of associations and wider confidence intervals, and thus weaker 

associated evidence.  

Few of the other covariates we analyzed showed strong or consistent associations with 

physiologic functioning PC scores (eTable 3 in the Supplement). The one that endured 

adjustment for substudy was the association of PC2 with BMI; however, the magnitude of this 

association was substantially diminished in the sensitivity analysis eliminating three largely 

outlying points. Associations with robust versus prefrail/frail status and with current self-

reported health were unaffected by removal of these outliers; association between PC2 scores 

and report of somewhat/much worse health over the last year was considerably attenuated.  

DISCUSSION 

In this proof of principle study, patterns of correlation among measures of heart rate variability, 

in-lab adrenocortical stimulation, and at-home diurnal salivary cortisol variation were consistent 

with theory positing shared physiological governance of these measures’ steady-state levels and 

adaptation to provocation. In a complete-case data analysis, the large majority of multiply-

imputed samples, and a mean of multiple imputations analysis, components predominantly 

weighted to multiple steady-state measures or to multiple adaptation measures were both 

evidenced. The great majority of exceptions among the imputations or loadings contrasted 

steady-state and adaptation. In regression analyses, both PCs were strongly associated with 

stressor substudy and, more substantively, with robust versus prefrail/frail status after adjusting 

for stressor substudy. Self-reported health—and, albeit with sensitivity to outliers, BMI—were 

associated with the steady-state component (PC2) after stressor substudy adjustment. No 

additional associations with demographic, disease, or behavioral factors were well evidenced.    



Our study builds on a considerable body of prior work, while adding important insights. We have 

noted the WHAS stimulus-response studies: WHAS findings have been separately reported from 

repeated salivary cortisol assessment at home over 12 hours (15), Holter monitor assessment 

during a 2-3 hour at-home study evaluation (14), an ACTH test (16), an OGTT (17), and an 

evaluation of phosphocreatine recovery in response to exercise (18). These are consistent with 

our findings of association with physical frailty phenotype status. The Baltimore Longitudinal 

Study on Aging (BLSA) and The Irish Longitudinal Study on Ageing have assessed orthostatic 

blood pressure in its participants (29-30); the BLSA and various other epidemiological cohorts 

on aging have conducted oral glucose tolerance tests on their study cohorts (e.g., 31-32). We are 

not aware of any prior studies that have analyzed data from multiple stimulus-response tests that 

aimed to query differing physiologic systems concurrently, however. The studies cited earlier in 

this paragraph, moreover, were observational. We believe that our study and the PRIME-KNEE 

Study (33) are the first to have designed multiple-stimulus-response test batteries explicitly to 

characterize resilience capacity in older adults approaching an impending clinical stressor.    

Hypotheses positing that multi-system dysregulation underlies frailty have appeared in the 

literature for at least 20 years (e.g. 1,5,7,8,34,35), and a more recent literature has posited the 

same for resilience (3,36). We believe that our study is the first to have evidenced these using 

dynamic, multi-system data. That self-reported health also evidences association with multi-

system dysregulation, as SPRING hypothesized during its design, adds proof of principle that the 

data we are collecting and the steady-state/adaptation paradigm we have applied to summarize it 

embody meaningful physiological signal. We look forward to validating our findings in the 

larger sample—allowing for more sophisticated analyses and fuller adjustment for potential 

confounders—that the primary SPRING study will provide. The primary SPRING hypothesis 



that physiologic measures are associated with resilient/non-resilient trajectories following a 

subsequent clinical stressor additionally will be tested in the main study.  

We observed substantial heterogeneity in our physiological functioning metrics and PC scores 

across clinical stressor groups. This adds concurrent validity to the measures we have 

developed—older adults with late-stage chronic kidney disease predictably have more 

dysregulated physiology than older adults approaching an elective total knee replacement, for 

example. To have recruited older adults with a wide range of physiological fitness is a benefit for 

SPRING. The substantial inter-study heterogeneity, however, also complicates the interpretation 

of findings. Stressor subgroup was strongly associated with key demographic determinants in the 

SPRING pilot, including age, sex, race, and BMI. Where substantial crude associations 

attenuated greatly upon adjustment for substudy, we consider it most probable that the variable 

was acting as a proxy for substudy (e.g. for nonwhite race, whose representation in REDI was 

much greater than in the other studies). Where they persisted despite such adjustment but were 

considerably attenuated in the sensitivity analysis (e.g., BMI), we will look to the primary study 

to provide further clarity. 

Strengths and limitations. Our study’s overarching strength was its collection of multiple 

stimulus-response measures in a cohort of older adults approaching major clinical stressors, 

using rigorous protocols. This is a major innovation. Primary limitations are our relatively small 

sample size, commensurate with an early-phase pilot study, and frequently missing data on one 

or more stimulus-response tests. We implemented multiple imputation to mitigate the missing 

data concern: This approach yields valid estimates of the covariation underlying PCs so long as 

the data are missing at random, meaning that missingness did not differ by unobserved 

physiologic status after accounting for the information observed. We believe this assumption is 



reasonable, given that missed tests often occurred due to scheduling difficulties. The sample size 

mandated simplifications in analyses, including that few statistical adjustments could be made 

while avoiding overfitting. We ideally would have fit differential equations to our stimulus-

response data, or at least, latent variable analyses hypothesizing “steady-state” and “adaptation” 

factors. Instead, we evaluated “steady-state” and “adaptation” metrics of the multi-system 

response using PCA. PCA approximates a latent variable fit, hence provides sound groundwork 

for future validation. We do not claim that the steady-state/adaptation schema or the stimulus-

response tests analyzed in this paper are ideal The SPRING ACTH data collection lasted only 

one hour: Longer duration would have allowed for more complete cortisol recovery. The salivary 

cortisol loading’s positive sign in the steady-state PC surprised us: We would have expected 

negative sign considering elevated daily cortisol as a sign of adverse health. Future validation 

will be particularly important here. We are reassured that the HRV and ACTH metrics most 

strongly anchored this PC. Of note, confidence intervals reported in Table 3 do not incorporate 

imputation-associated uncertainty in principal components loadings. This will be important to do 

in an ultimate confirmatory study.  

A final limitation is the difficulty in recruiting older adults exhibiting the whole range of 

physiologic fitness in a study like SPRING. Conducting stimulus-response tests is challenging 

even under ideal conditions, but it is substantially harder when older adults are preparing to 

undergo major clinical stressors to treat their underlying health issues (37). As we have 

previously reported, it seems likely that our sample is biased toward more resilient individuals 

who were willing to undergo the study battery we designed (19). Our data suggest that persons 

exhibiting a heterogeneous physiologic range nonetheless were recruited—but efforts to facilitate 



frail and non-resilient individuals in participating in studies such as ours will continue to be 

important.  

Our study supports the usefulness of physiologic steady-state/adaptation as an organizing 

principle for the summary of dynamic stimulation data spanning HRV, ACTH and salivary 

cortisol tests. It also evidences that steady-state and adaptation measures summarize 

physiological functioning relevant to frailty and hence resilience. Our future work will seek to 

validate this schema with more extensive data, additional dynamic stimulation measures, and 

more sophisticated modeling, and to evaluate resulting measures’ utility for distinguishing 

individuals who prove resilient, or not, following the clinical stressors we are studying. We 

hypothesize that the relevance of the concepts studied here generalizes to other tests, 

physiological systems, and stressor types.   
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Captions for Tables and Illustrations 

 

Table 1 title: Study of Physical Resilience and Aging Pilot Participant Characteristics by 

Substudy. 

Table 2 title: Varimax-rotated Principal Component (PC) loadings of physiologic regulation 

metrics in Study of Physical Resilience and Aging Pilot. 

Table 3 title: Linear Regressions of Multiply Imputed Mean Principal Component (PC) Scores 

on Surrogate Physiologic Measures, with Stressor Type Adjustment.  

Figure 1 caption: Distributions and co-distributions of physiologic metrics. Distributions are 

shown as density plots and co-distributions as scatterplots, overlaid by stressor type (identified in 

the figure key). Shown in order are HRV steady-state and adaptation metrics (fpc1, fpc2), ACTH 

steady-state and adaptation metrics (cortisol area under the curve and log-log ratio of recovery to 

baseline), and salivary cortisol steady-state and adaptation metrics (log mean cortisol, log peak-

nadir ratio).  

Alt text: Figure shows density plots comparing steady-state and adaptation physiologic metrics 

derived from HRV, ACTH and salivary cortisol tests across stressor type, and scatterplots 

comparing these measures coded for stressor type. 

Figure 2 caption: Distributions and Co-distributions of physiological capacity summary 

measures. Distributions are shown as density plots and co-distributions as scatterplots, overlaid 

by stressor type (identified in the figure key). Shown in order are multiple imputation mean 

principal component scores and z-score averages for: ACTH adaptation and salivary cortisol 

steady-state metrics, HRV and salivary cortisol adaptation measures, and HRV and ACTH 

steady-state measures. PC1 loads highly on “adaptation” metrics; PC2 loads highly on “steady-

state” metrics. 



Alt text: Figure shows density plots comparing PC and alternative summary measure 

distributions across stressor type, and scatterplots comparing these measures coded for stressor 

type. The alternative summary measures are z-score averages for: ACTH adaptation and salivary 

cortisol steady-state metrics, HRV and salivary cortisol adaptation measures, and HRV and 

ACTH steady-state measures. 

 

 

  



Table 1. Study of Physical Resilience and Aging Pilot Participant Characteristics by 

Substudy. 

Variable RESTORE REDI REBOUND 

Years of age 71 (68, 77) 71 (64, 75) 67 (65, 72) 

Female  16 (70%) 5 (23%) 12 (35%) 

Non-whitea  8 (35%) 14 (64%) 2 (6%) 

3+ Diseases  17 (77%) 19 (86%) 15 (52%) 

5+ Medications  17 (74%) 19 (86%) 12 (35%) 

Body mass indexb  32.96 (29.00, 36.13) 28.60 (24.13, 31.87) 27.46 (23.72, 30.14) 

Ever smoking  8 (36%) 12 (55%) 12 (41%) 

Drank last month  13 (59%) 9 (41%) 14 (52%) 

Exercise  10 (48%) 9 (41%) 4 (14%) 

Pre-frail  14 (64%) 14 (64%) 13 (45%) 

Frail  3 (14%) 2 (9%) 1 (3%) 

Self-reported health    

Excellent/Very Good 7 (32%) 4 (16%) 14 (49%) 

Good 13 (59%) 9 (38%) 12 (41) 

Fair/Poor 2 (9%) 11 (46%) 3 (10%) 

Change in self-reported 

health over last year 

   

Much/Somewhat Better 10 (45%) 5 (23%) 6 (21%) 

Same 9 (41%) 13 (59%) 9 (31%) 

Somewhat worse/Worse 3 (14%) 4 (18%) 14 (48%) 



HRVc – Steady-state   0.66 (-0.97, 1.27) 0.00 (-1.70, 1.22) -0.41 (-1.52, 0.30) 

HRVc – Adaptation  0.04 (-0.35, 0.37) -0.71 (-1.15, 0.09) 0.30 (-0.07, 0.71) 

ACTHd – Steady-state 32.32 (27.59, 34.53) 30.72 (24.67, 33.37) 32.01 (26.19, 36.71) 

ACTHd - Adaptation -1.07 (-1.61, -0.47) -0.76 (-0.95, -0.22) -0.62 (-1.30, -0.31) 

Salivary cortisole-  

Steady-state 

1.81 (1.40, 2.07) 2.13 (1.91, 2.68) 1.80 (1.49, 2.04) 

Salivary cortisole-

Adaptation  

1.19 (0.87, 1.93) 1.13 (0.95, 1.21) 1.74 (1.46, 2.19) 

Note. Abbreviations are: RESTORE-RESilience in TOtal knee Replacement; REDI-Resiliency in 
Dialysis Initiation; REBOUND-REsiliency in older adults UNDergoing BOne marrow 
transplant; HRV – heart rate variability; ACTH - Adrenocorticotropic hormone stimulation test. 

Note. Sample sizes are 23 for RESTORE, 22 for REDI, and 32 for REBOUND. There was 
incompleteness by selected measures. For numeric measures, data were incomplete for body 
mass index (1 missing in REDI; 5 missing in REBOUND), HRV (3 missing in RESTORE, 9 
missing in REDI, 13 missing in REBOUND), ACTH (5 missing in RESTORE, 7 missing in 
REDI, 8 missing in REBOUND), and salivary cortisol (4 missing in RESTORE, 4 missing in 
REDI, 1 missing in REBOUND). 

Note. Column contents: median (IQR) for numeric measures; n (%) for categorical variables.  

a n=21 self-identified as Black; 2, as Asian; 1, as Native American / Pacific Islander. None 
identified ethnicity as Hispanic.  

b Units = kg/m2 

c Holter monitor data-specific summary scores calculated as per reference #23, Framingham. As 
PCs, these are unitless. 

d Steady-state = area under 0, 30, 60 minute response curve. Adaptation = log(log(60 minute 
value/time 0 value)). Cortisol was measured as micrograms/dL. 

e Steady-state = log(mean of awakening, 11 AM, 3 PM, bedtime measures). Adaptation = 
log(maximum measure/minimum measure). Cortisol was measured as nmol/L.  



Table 2 – Varimax-rotated Principal Component (PC) loadings of physiologic regulation 

metrics in Study of Physical Resilience and Aging Pilot. 

Measure 2 PCs–Complete 

casesa 

2 PCs–MI Meanb 3 PCs–MI Meanb 

PC1 PC2 PC1 PC2 PC1 PC2  PC 3 

HRV-Steady-state -0.08 0.56 -0.02 0.55 -0. 09 0.72 -0.03 

HRV-Adaptation 0.60 0.33 0.53 0.34 0.75 0.05 0.20 

ACTH-Steady-state 0.10 0.62 0.12 0.60 0.10 0.69 0.02 

ACTH-Adaptation -0.39 0.19 -0.29 0.41 0.12 -0.00 0.74 

Salivary Cortisol – 

Steady-state 

-0.17 0.35 -0.41 0.24 -0.12 -0.03 0.58 

Salivary Cortisol - 

Adaptation     

0.66 -0.14 0.67 -0.03 0.63 -0.07 -0.27 

Note. Abbreviations are HRV – heart rate variability; ACTH - Adrenocorticotropic hormone stimulation test; PC – 
principal component; MI – multiple imputation. 

a Analysis restricted to cases with all six metrics measured (n=44). 

b Loadings derived from mean of each metric (PCA on 6 metric means) over 10 multiple imputations (n=79 per 

imputation). 

c Holter monitor data-specific summary scores calculated as per reference #23, Framingham. 

d Steady-state = area under 0, 30, 60 minute response curve. Adaptation = log(log(60 minute value/time 0 value)). 

e Steady-state = log(mean of awakening, 11 AM, 3 PM, bedtime measures). Adaptation = log(maximum 

measure/minimum measure).  



Table 3 –Linear Regressions of Multiply Imputed Mean Principal Component (PC) Scores 

on Surrogate Physiologic Measures in the Study of Physical Resilience and Aging Pilot, 

with Stressor Type Adjustment.  

Variable Model 1 - Crude Model 2 – Stressor 

type adjustment 

Model 3 – Stressor 

type adjustment, 

overlapping rangea 

Coeff 95% CI Coeff 95% CI Coeff 95% CI 

Robust versus 

prefrail/frail– PC1 

0.80 (0.24, 1.36) 0.61 (0.12, 1.11) 0.33 (-0.03, 0.68) 

Robust versus 

prefrail/frail– PC2 

0.57 (0.01, 1.14) 0.60 (0.01, 1.18) 0.26 (-0.13, 0.65) 

Self-reported healthb        

Good – PC1 -0.07 (-0.72, 0.58) 0.16 (-0.41, 0.74) 0.15 (-0.23, 0.52) 

Good – PC2 -0.67 (-1.31, -0.03) -0.71 (-1.38, -0.05) -0.58 (-1.01, -0.14) 

Fair/Poor – PC1 -0.96 (-1.79, -0.14) -0.27 (-1.04, 0.50) -0.19 (-0.70, 0.31) 

Fair/Poor – PC2 -1.02 (-1.84, -0.21) -1.07 (-1.96, -0.18) -0.41 (-1.00, 0.17) 

Change in self-

reported health over 

last yearb 

      

Same – PC1 0.05 (-0.67, 0.77) 0.26 (-0.36, 0.88) 0.18 (-0.24, 0.61) 

Same – PC2 0.41 (-0.27, 1.10) 0.48 (-0.23, 1.18) 0.19 (-0.30, 0.67) 

Somewhat/much 

worse – PC1 

0.45 (-0.33, 1.24) 0.19 (-0.52, 0.89) 0.37 (-0.07, 0.81) 



Somewhat/much 

worse – PC2 

-0.56 (-1.31, 0.19) -0.63 (-1.43, 0.17) -0.24 (-0.82, 0.34) 

Note. Abbreviations are PC – principal component; Coeff – coefficient; CI – confidence interval. 

Note. Sample sizes are 79 for crude analysis and with stressor type adjustment. See footnote a for 
sample sizes on restricted ranges.  

a Overlapping range is -1.5 to 0.18 for PC1 (n=36) and 1.0 to 1.7 for PC2 (n=61) 

b n=6 observations were missing for the self-reported health variables 



Figure 1. Distributions and co-distributions of physiologic metrics.  

 

 



Figure 2. Distributions and Co-distributions of physiological capacity summary measures.  

Legend: Shown in order are MI mean principal component score (pc1= “Adaptation”; pc2= 
“Steady-state”) and z-score averages for: ACTH adaptation and salivary cortisol steady-state 
metrics, HRV and salivary cortisol adaptation measures, and HRV and ACTH steady-state 
measures.  

 

 

 



Supplementary Information  

 
 
Characterization of Dynamic Adaptation to Stressors using Multi-System Stimulus-
Response Data: The Study of Physical Resilience in Aging Pilot 
 
eFigure1. SPRING Conceptual Framework.  

eTable 1. Varimax-rotated PCs loadings for 3-component solution, physiologic regulation metrics in SPRING Pilot.  

eFigure 2. Parallel analysis plots, PCAs of (a) complete case data (n=44) and (b) PCA on average for each of 6 
metrics over 10 multiple imputations (n=79). 

eMethods. Report on imputation-specific analyses. 

eTable 2. Varimax-rotated PCs loadings, physiologic regulation metrics in SPRING Pilot, per multiply imputed 
replicate.  

eTable 3. Linear regressions of multiply imputed mean principal component (PC) scores on potential determinants 
of resilience in SPRING Pilot, with stressor type adjustment. 

  



eFigure 1. SPRING Conceptual Framework.  

Of primary focus in the current paper is the measurement of “physiologic resilience” using dynamic stimulation measures. 
Associations of such a measurement with potential determinants of resilience and static, “surrogate” measures of physiologic 
resilience also are evaluated in the present paper. The figure additionally illustrates that clinical stressors to be experienced—such 
as those anchoring SPRING—operate in the context of the physiologic resilience capacity, and the capacity itself is a product of 
one’s physical characteristics and health as well as (not shown) the social and environmental milieu in which one is embedded. 
“Physical resilience” refers to observed trajectories of phenotypic measures over the time period shortly preceding and then 
following the stressor experience both short and longer term, and outcomes are the clinical results the stressors aim to achieve—
survival, certainly, but also absence of adverse events, success in restoring function or eliminating disease, or the like.  

Permission to use Figure 1 from Walston J, Varadhan R, Xue Q-L, et al. A Study of Physical Resilience and Aging (SPRING): 
Conceptual framework, rationale, and study design. J Am Geriatr Soc. 2023; 71(8):2393‐2405. doi:10.1111/jgs.18483 was granted 
by the publisher John Wiley & Sons via the Copyright Clearance Center’s RightsLink® service. 

 

  



eTable 1. Varimax-rotated PCs loadings for 3-component solution, physiologic 
regulation metrics in SPRING. Complete case analysis (n=44).  

Measure PC 1 PC 2  PC 3 
HRV-Steady 0.55 0.18 0.01 
HRV-Adaptation 0.13 0.14 0.76 
ACTH-Steady 0.78 -0.14 0.02 
ACTH-Adaptation -0.14 0.74 -0.03 
S. Cort. – Steady   0.09 0.57 0.12 
S. Cort - Adaptation     -0.20 -0.23 0.63 

 

  



eFigure 2. Parallel analysis plots, PCAs of (a) complete case data (n=44) and (b) 
PCA on average for each of 6 metrics over 10 multiple imputations (n=79).  

Eigenvalues for principal components analysis of 6 physiological functioning metrics measured in SPRING (solid line) are overlaid 
with eigenvalues from a principal components analysis of 6 randomly generated, independent variables (10 replicates; dashed line 
connects these). Dimensions of shared covariation are evidenced for observed data eigenvalues trending above the independently 
generated data eigenvalues: In (a) no dimensions of shared covariation are clearly evidenced, whereas in (b), 2 dimensions are 
evidenced.  

(a) 

 

(b) 

  



eMethods. Report on imputation-specific analyses. 

Parallel analysis applied to one replicate at a time after multiple imputation most often suggested 2 components (5 of 
10 replicates), followed by 3 components (3 replicates) and 1 component (2 replicates).  
 
In the eight cases in which 2 or 3 components were indicated, dimensions involving multi-measure steady state, 
adaptation, or their contrast were identified (Supplement Table 2). When the first 2 components were rotated for 
these eight cases, a component highly loading on the HRV and ACTH steady state measures was present in 7 of the 8 
replicates; the remaining replicates additionally produced loadings of comparable magnitude for the HRV adaptation 
measure and the negated ACTH adaptation measure. The remaining component reliably loaded on salivary cortisol 
adaptation. In 5 of the replicates it also highly loaded on the HRV adaptation; in the remaining replicates, it 
contrasted the two salivary cortisol measures (once), or loadings for all remaining variables were small (twice). 
When the first 3 components were rotated for these eight cases, a component highly loaded on the HRV and salivary 
cortisol adaptation measures appeared in all cases, and in only one replicate did this component load appreciably on 
any other measure (negated salivary cortisol steady state). A second component highly loading on the HRV and 
ACTH steady state measures appeared in 7 out of the 8 replicates; salivary cortisol steady state also was highly 
loaded in one of these, and negated ACTH adaptation in one other. The remaining component was considerably 
variable but reliably involved salivary cortisol steady state or ACTH adaptation. In 2 replicates the two measures 
were contrasted (2 replicates); for remaining replicates, the component highly loaded on only ACTH adaptation (4 
times) or only salivary cortisol steady state (twice).  
 
In one of the two cases with a single component indicated, the leading component was highly loaded on the HRV 
and salivary cortisol adaptation measures. In the other, the overall pattern was to contrast the steady state measures 
versus the adaptation measures, with particularly high loadings for the salivary cortisol and ACTH adaptation 
measures (negative signs) and the salivary cortisol steady state measure. A summary of loading estimates for these 
two cases appears just below:  
 

Measure Loading 
Case 1 Case 2 

HRV-Steady 0.07 0.15 
HRV-Adaptation 0.61 -0.32 
ACTH-Steady 0.33 0.23 
ACTH-Adaptation -0.19 0.41 
S. Cort. – Steady   -0.32 0.55 
S. Cort - Adaptation     0.61 -0.59 

 
In the main manuscript, we synthesized information across imputations by performing PCA on the mean of each 
stimulus-response metric over replicates. We compared this approach with a second synthesis method: Performing 
PCA on the averages of the between-metric correlations (6-by-6 matrix) over replicates. In each case, PC scores 
were computed by applying the resulting loadings to the z-transformed metric values. Correlations between scores 
for the two methods exceeded 0.997 for both PCs.  
 

  



eTable 2. Varimax-rotated PCs loadings, physiologic regulation metrics in SPRING, per multiply imputed 
replicate.  

Replicate Measure #Components 2 COMP-PC1 2 COMP-PC2 3 COMP-PC1 3 COMP-PC2 3 COMP-PC3 

1 HRV – Steady State 2 0.14 

0.53 

-0.05 

-0.28 

-0.50 

0.61 
 

0.54 

0.32 

0.68 

0.34 

0.18 

-0.04 
 

0.04 

0.67 

-0.01 

0.04 

-0.43 

0.60 
 

0.71 

0.11 

0.67 

-0.04 

0.13 

-0.06 
 

-0.23 

0.28 

0.18 

0.86 

0.28 

-0.17 
 

HRV – Adaptation 

ACTH – Steady State 

ACTH – Adaptation 

S. Cort. – Steady State 

S. Cort. - Adaptation 

2 HRV – Steady State 3 0.09 

0.13 

0.18 

0.64 

0.61 

-0.40 
 

-0.09 

0.76 

0.29 

0.17 

-0.06 

0.55 
 

-0.06 

0.16 

0.05 

0.67 

0.61 

-0.38 
 

-0.18 

0.76 

0.20 

0.17 

-0.07 

0.56 
 

0.70 

0.02 

0.71 

-0.05 

0.04 

-0.02 
 

HRV – Adaptation 

ACTH – Steady State 

ACTH – Adaptation 

S. Cort. – Steady State 

S. Cort. - Adaptation 

3 HRV – Steady State 2 0.46 

0.51 

0.55 

0.46 

0.08 

0.02 
 

-0.09 

0.41 

0.04 

-0.36 

-0.38 

0.74 
 

0.62 

0.17 

0.54 

0.47 

-0.09 

-0.24 
 

-0.08 

0.73 

0.20 

-0.05 

0.03 

0.65 
 

-0.28 

0.23 

-0.05 

0.35 

0.81 

-0.29 
 

HRV – Adaptation 

ACTH – Steady State 

ACTH – Adaptation 

S. Cort. – Steady State 

S. Cort. - Adaptation 

4 HRV – Steady State 2 -0.07 

0.60 

0.31 

-0.25 

-0.27 

0.63 
 

0.63 

0.23 

0.55 

0.24 

0.41 

-0.14 
 

0.66 

0.08 

0.58 

-0.02 

0.45 

-0.13 
 

-0.06 

0.72 

0.30 

0.05 

-0.27 

0.56 
 

0.01 

0.23 

-0.11 

0.92 

0.03 

-0.31 
 

HRV – Adaptation 

ACTH – Steady State 

ACTH – Adaptation 

S. Cort. – Steady State 

S. Cort. - Adaptation 
6a HRV – Steady State 3 -0.02 

0.67 

0.53 

0.13 

-0.15 

0.70 

0.68 

0.10 

-0.08 

0.09 HRV – Adaptation 



ACTH – Steady State 0.30 

-0.12 

-0.26 

0.62 
 

0.57 

0.33 

0.50 

-0.13 
 

0.21 

0.09 

-0.16 

0.64 
 

0.67 

-0.12 

0.21 

-0.10 
 

0.01 

0.79 

0.59 

-0.07 
 

ACTH – Adaptation 

S. Cort. – Steady State 

S. Cort. - Adaptation 
7 HRV – Steady State 2 0.01 

0.59 

0.15 

-0.23 

-0.35 

0.68 
 

0.59 

0.26 

0.57 

0.42 

0.29 

-0.07 
 

0.20 

0.65 

0.36 

-0.11 

-0.19 

0.61 
 

0.54 

-0.02 

0.13 

0.80 

-0.17 

-0.14 
 

0.24 

0.07 

0.56 

-0.14 

0.73 

-0.29 
 

HRV – Adaptation 

ACTH – Steady State 

ACTH – Adaptation 

S. Cort. – Steady State 

S. Cort. - Adaptation 

8 HRV – Steady State 2 0.58 

0.38 

0.60 

0.34 

0.16 

0.09 
 

-0.09 

0.44 

0.09 

-0.37 

-0.55 

0.59 
 

-0.08 

0.67 

0.10 

0.11 

-0.29 

0.66 
 

0.71 

0.10 

0.69 

-0.03 

0.04 

-0.10 
 

0.01 

0.18 

-0.04 

0.82 

0.54 

-0.08 
 

HRV – Adaptation 

ACTH – Steady State 

ACTH – Adaptation 

S. Cort. – Steady State 

S. Cort. - Adaptation 

9a 

 
 
 
 
 

HRV – Steady State 3 0.63 

0.34 

0.61 

0.28 

0.20 

0.03 
 

-0.07 

0.45 

0.09 

-0.47 

-0.27 

0.70 
 

0.71 

0.10 

0.65 

0.23 

-0.08 

-0.03 
 

-0.05 

0.65 

0.11 

-0.34 

0.03 

0.67 
 

-0.04 

0.38 

-0.05 

0.39 

0.81 

-0.21 
 

HRV – Adaptation 

ACTH – Steady State 

ACTH – Adaptation 

S. Cort. – Steady State 

S. Cort. - Adaptation 
Note. Data shown for 8 out of 10 replicates for which 2 or 3 components were indicated by parallel analysis (n=79 per replicate). 

Note. HRV = heart rate variability; ACTH = adrenal corticotropic hormone test; S. Cort. = salivary cortisol 

a In replicates 5 and 10, parallel analysis indicated a single component. Component loadings for these are described in the eMethods. 

  



eTable 3. Linear regressions of multiply imputed mean principal component (PC) 
scores on potential determinants of resilience in SPRING Pilot, with stressor type 
adjustment.  

Variable Model 1 - Crude Model 2 – Stressor 

type adjustment 

Model 3 – Stressor type 

adjustment, 

overlapping rangea 

Coeff 95% CI Coeff 95% CI Coeff 95% CI 

Age (years)–PC 1 -0.03 (-0.07, 0.02) -0.02 (-0.06, 0.02) 0.01 (-0.01, 0.04) 

Age (years)–PC 2 -0.01 (-0.05, 0.04) -0.01 (-0.06, 0.04) >-0.01 (-0.04, 0.03) 

Female–PC 1 0.22 (-0.34, 0.79) 0.04 (-0.49, 0.57) 0.08 (-0.26, 0.41) 

Female–PC 2 -0.09 (-0.65, 0.47) -0.19 (-.080, 0.42) -0.19 (-0.62, 0.24) 

Non-white–PC 1 -0.90 (-1.47, -0.32) -0.23 (-0.85, 0.38) 0.07 (-0.33, 0.46) 

Non-white–PC 2 0.08 (-0.52, 0.68) 0.20 (-0.51, 0.91) -0.05 (-0.53, 0.43) 

# Diseases<3–PC 1 0.49 (-0.15, 1.13) 0.03 (-0.55, 0.61) 0.01 (-0.41, 0.43) 

# Diseases<3–PC 2 >-0.01 (-0.65, 0.65) -0.03 (-0.73, 0.67) -0.44 (-0.89, 0.02) 

# Medications>4–PC 1 -0.69 (-1.25, -0.14) -0.18 (-0.74, 0.37) -0.04 (-0.45, 0.37) 

# Medications>4–PC 2 -0.12 (-0.69, 0.44) -0.12 (-0.77, 0.53) 0.14 (-0.31, 0.58) 

BMI–PC 1 -0.02 (-0.08, 0.02) -0.01 (-0.05, 0.04) 0.01 (-0.02, 0.04) 

BMI–PC 2 -0.06 (-0.11, -0.01) -0.07 (-0.13, -0.02) -0.01 (-0.05, 0.04) 

Ever Smoking–PC 1  -0.50 (-1.10, 0.09) -0.34 (-0.85, 0.16) 0.07 (-0.27, 0.40) 

Ever Smoking–PC 2 -0.02 (-0.62, 0.58) 0.01 (-0.60, 0.63) 0.22 (-0.19, 0.62) 

Drink last month–PC 1 0.06 (-0.56, 0.67) -0.09 (-0.60, 0.42) -0.17 (-0.48, 0.13) 

Drink last month–PC 2 0.49 (-0.10, 1.08) 0.47 (-0.14, 1.07) 0.16 (-0.24, 0.55) 

Exercise–PC 1 -0.35 (-0.99, 0.29) 0.01 (-0.57,  0.58) 0.05 (-0.32, 0.43) 

Exercise–PC 2 0.24 (-0.40, 0.88) 0.28 (-0.41, 0.96) -0.11 (-0.56, 0.34) 

a Overlapping range is -1.5 to 0.18 for PC 1 (n=36) and 1.0 to 1.7 for PC 2 (n=61) 

 


