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Summary: Physical resilience is a pressing research area in aging. The Study of Physical Resilience and Aging

(SPRING) posits that resilience is rooted in the fitness of specific physiological systems: It is studying resilience

by introducing stressors on selected systems and monitoring their return to homeostasis as time series. This paper

aims to study design properties for such “dynamical systems” data. We modeled post-stressor activity of a theoretical

biological system using damped linear oscillators representing varying levels of resilience. We then sampled points from

the curves in scenarios varying sparsity of serial observations (“points”) and measurement error variance. Local Linear

Approximation was used to estimate differential equations characterizing curve dynamics, and accuracy and precision

were assessed. Error variability was more impactful than sampling sparsity in curve recovery: With high variability,

estimation was biased for all curves regardless of numbers of points sampled. With low variability, curve recovery was

possible with few points, and accuracy increased sharply with initial increases in points sampled. Findings inform

analytic interpretation and future study design.
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1. Introduction

As the American population ages, physical resilience in older adults is a robust and pressing

area of research. Physical resilience reflects how well bodies respond to stressors– how quickly

and to what extent systems can bounce back from change. (Hadley et al., 2018). One

particularly important category of stressors is that of medical procedures, which become

increasingly important and complex as bodies age. Understanding resilience in this setting

is crucial in assessing both the impact and necessity of different medical procedures, which

would allow providers to make more informed healthcare decisions.

A key way to study resilience is through monitoring how different physiological systems

hypothesized to underlie resilience capacity respond to stressors. Considering the relevant

physiology as a dynamical system—that responds to provocation according to mechanisms

governed by differential equations—may provide a further useful lens for studying resilience.

Through this lens, the optimal study design is then to provoke the system in the laboratory

or clinic, and examine how it responds. Cortisol levels and glucose levels are two examples of

observable markers of such dynamical systems. The amounts of these hormones, chemicals,

etc. change in response to stressors and then attempt return to homeostasis, that is, steady

state.

It is thought that people with higher resilience return to homeostasis more quickly and suc-

cessfully than those with lower resilience—whether from a controlled, “laboratory” stressor

or a major life stressor such as surgery (Walston et al., 2023). Patterns of physiologic system

response post-stressor can be represented with models that reflect the governing equations

of the biological process mechanisms. People with low resilience are hypothesized to have

different governing parameters–and perhaps fundamentally different governing equations–

than those with adequate resilience.

The Study of Physical Resilience and Aging (SPRING) is a study with high potential for
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aiding resilience research. The study provides data on physiological systems with hypothe-

sized relevance to resilience through measurements of cortisol, glucose, physical fatigability

(reported fatigue after a standardized task), blood pressure, heart rate variability, and

immune cell response (Walston et al., 2023). In some cases, explicit stimulus-response exper-

iments were performed. In others, daily life was considered as the stressor, and monitoring

was performed over the course of a day. A key challenge arose from the constraints of clinical

research: For most measures, only 3-4 measurements including baseline and subsequent

measures following stimulus were feasible to obtain. New questions arise—is it possible to

estimate underlying governing equations if these are not known a priori, let alone with only

four data points per person? The following paper addresses study design questions motivated

by this question and the larger study. Through simulation studies, we assess the bias and

precision of curve estimation using Local Linear Approximation (LLA) as the number of

sampled points and amount of measurement error in the data collection change (Boker and

Graham, 1998).

We specifically study LLA in order to estimate curves’ governing equations. This choice

was motivated by the SPRING study design, where the sparsity of serial sampling limits

the complexity of procedure that can be applied. There is substantial literature surrounding

LLA, but little has been published regarding its application to sparsely sampled time series.

We aim to better understand the amount of sparseness and noise that renders local linear

approximation inaccurate or imprecise for curve parameter estimation. We also aim to

determine how accuracy and precision of parameter estimation differs as the frequency and

damping of the true curve change. These findings will aid in identifying gaps in methodologies

best suited for dynamical systems modeling of sparsely sampled data with appreciable

measurement error.

This paper first provides background on dynamical systems and the estimation of differ-
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ential equations governing their behavior from data. A methods section first describes the

characteristics of the population curves from which we sample and attempt to estimate,

then provides in-depth detail behind the simulation, from generating the data to estimating

curves and assessing that estimation. The results section is organized into two main parts.

The first part explores estimator properties when applied to data sampled from the true

curves with no measurement error—we refer to this as “exact data” or data with ”no noise”

throughout the paper. The second part mirrors the previous; it explores estimator properties

when applied to data sampled from the curves in the presence of measurement error with

varied variability—referred to as “noisy data” or ”data with noise” throughout this paper.

Lastly, the discussion section ties in conclusions and foresees future work.

Identifying systems dynamics governing resilience would lay foundation for preventive and

interventional treatments to increase resilience. It also might increase clinicians’ ability to

discriminate older adults capable of rebounding from stressful procedures from those at

risk for long-term adverse consequences, thereby laying groundwork for improved clinical

management strategies.

2. Methods

2.1 Dynamical Systems

Complex dynamical systems are at the center of the resilience hypothesis. In this context,

a dynamical system is comprised of numerous components that interact with each other

temporally and together result in one’s physiological state and dynamics (Fried et al., 2021).

The key is a focus not on each component individually, but on the system of interacting com-

ponents. These components scale from the cellular and molecular level, such as mitochondria

and proteins, to larger physiological systems, such as the musculo-skeletal, stress-response,

and metabolic systems (Fried et al., 2005). Communication via feedback loops, protocols,
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and other systematic functions are key to these dynamical systems, which Csete and Doyle

argue are simultaneously robust and fragile (Csete and Doyle, 2002). Governing equations

mathematically model the complex behaviors of these dynamical systems.

Physically resilient adults are hypothesized to have their multi-systems functioning harmo-

niously and efficiently (Varadhan et al., 2018). On the other hand, adults with low resilience

are hypothesized to have critically dysregulated dynamical systems. This is expected to occur

as individual systems decline, which leads communication and feedback between systems to

deteriorate. Eventually, the dysregulation of the systems crosses a threshold and a state of

low resilience emerges (Fried et al., 2021). In mathematical terms, we hypothesize that the

complex dynamical systems for resilient and non-resilient adults are governed by distinct

equations–either in form or parameters.

2.2 Dynamical Systems

In most cases to be studied in SPRING, the equations governing the dynamical systems

are unknown. We therefore seek to learn them– at least approximately–empirically. To do

this, we employ Local Linear Approximation, which we describe in a future section. LLA

allows us to estimate curve derivatives and approximate underlying system dynamics using

a simple second order linear differential equation (Equation 1). This differential equation

is characteristic of a Damped Linear Oscillator (DLO) (Equation 2). Although we are not

assuming the DLO most accurately models SPRING or any other biological data, we are

motivated to pursue this more simplistic linear approximation by the sparsity of our data.

Given more data, we would consider complex, nonlinear models. It is also important to note

that we also generate our theoretical data using the DLO. We do this not because the DLO

serves as a true model, but to acknowledge its connection to our methodology and assess the

success of curve recovery in a controlled scenario.

The approach we pursue has precedent in related literature–LLA and the DLO has been
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used in dynamical system applications across disciplines (see LLA section). A particularly

relevant example is Ackerman and colleagues’ use of a more complex form of the DLO

(the Ackerman model) to approximate blood sugar following an oral glucose tolerance test

(Ackerman et al., 1964). This glucose-tolerance test is a component of the SPRING study we

wish to utilize in evaluating resilience status. Although the Ackerman model aligns with the

context and goals of our setting, its complexity renders it a very difficult model–particularly

in a sparse data scenario.

As mentioned, all data in this study are simulated using variations of a general equation for

a damped linear oscillator shown in Equation 2 (Equations adapted from Boker & Graham,

1998).

d2x

dt2
= ζ

dx

dt
+ ηx. (1)

x = Ae
1
2
ζtcos

(
t

√
−η − ζ2

4
+ ϕ

)
. (2)

The value of A controls the initial amplitude of the oscillation. ϕ controls the phase constant–

the initial phase offset. The exponential term controls the damping of the system—the more

negative the value of ζ, the greater the rate at which the amplitude decreases and the more

damped the system is. The cosine term
√

−η − ζ2

4
controls the frequency– where η is the

primary function of the frequency of the undamped oscillations: The more negative the

value of η, the greater the frequency. We will refer to ζ as the damping parameter, and η as

the frequency parameter. It is important to note this parameterization does not completely

partition damping and frequency. However, this is standard notation in the literature. ζ and

η are the two parameters of interest throughout this paper.

2.3 LLA

Local Linear Approximation is the methodology we study for estimating governing equations.

LLA is a well-known method for fitting first and second order differential equations– it has a
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long history of use to explore regulatory systems and system dynamics modeled by damped

linear oscillators (Boker and Graham, 1998; Boker, 2001; Boker et al., 2010; Steele and Ferrer,

2011; Butner et al., 2005; Boker and Nesselroade, 2002). Variations of this methodology have

also been developed and are explored in a future section.

This work uses LLA to estimate the first and second derivatives of the curves at each

sampled point. These derivative estimations are then utilized in Equation 1 to estimate

the damping and frequency parameters of the curves. We assume that all measurements are

equally spaced.

First, windows of the data are created, which are subsets of the data containing some

number of t-wise consecutive points. The size of the subsets (window size) determines which

data are used to estimate derivatives at a single-location–the mid-point of the window. We

consider window sizes of three and five points (henceforth referred to as three-point and

five-point LLA). There is a trade-off between larger and smaller windows. Larger windows

lead to broader summaries of curve behavior—these estimators may be less susceptible to

noise but may not recover curve intricacies as well compared to smaller windows.

We assume each person j belongs to population i and has K total measurements. Thus, tk

denotes time-point k, k = 1, ..., K, and xijk denotes the value of x at time-point k for person

j in population i. Detail and reasoning behind these enumerations will become more clear

in a future section, but here we focus on LLA.

LLA works the same way for any window size, so we will explain in depth using the

example of a three-point window size. The first window for person i in population j would

comprise of (t1, xij1), (t2, xij2), and (t3, xij3). For any window, there are three data-points of

interest–those located at the start, the center, or the end point of the window. We will refer

to these as (t[k-1], xij[k-1]), (tk, xijk), and (t[k+1], xij[k+1]), respectively. Note that in five-point

LLA, the indices would be [k-2], k, and [k+2]. Using these three points and the fact of equal
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spacing, the first and second derivatives are calculated according to Equations 3 and 4.

These calculated derivatives correspond to the midpoint, (tk, xijk).

d̂x

dt ijk
=

xij[k-1] − xij[k+1]

2(tk − t[k-1])
. (3)

d̂2x

dt2 ijk
=

xij[k+1] − xijk

(tk − t[k-1])2
−

xijk − xij[k-1]

(tk − t[k-1])2
. (4)

After these calculations are completed and stored, the window shifts forwards by one point.

The next window in this example would comprise of (t2, xij2), (t3, xij3), and (t4, xij4), and

the process repeats. By the completion of three-point LLA, there is an estimated first and

second derivative at every sampled point in the data, except for the first and last points.

Five-point LLA utilizes less of the data, as the first two and last two points do not have

estimated first and second derivatives.

2.4 Other Methodologies for Estimating Governing Equations

We considered other methodologies to model governing equations of dynamical systems,

many of which are more complex than LLA. One noteworthy methodology is latent differ-

ential equation modeling (LDE)– an extension of LLA that utilizes time-delay embedding

to estimate parameters in differential equation models (Boker and Laurenceau, 2006; Boker

et al., 2004). Another is Bruton et. al’s Sparse Identification of Nonlinear Dynamics (SINDy)–

a generalization of LLA that can entertain equations more complex than the DLO and that

has extensions ranging from experimentation with regression penalties to addressing sparse,

noisy, or corrupted data (Brunton et al., 2016; Venkatraman et al., 2023; Cozad et al., 2014;

Schaeffer and McCalla, 2017; Messenger and Bortz, 2021; Kaheman et al., 2022; Tran and

Ward, 2017; Champion et al., 2020; Fasel et al., 2022). Other researchers have incorporated

machine learning approaches, with equally vast extensions and methodologies (Lejarza and

Baldea, 2022). It is also worth briefly addressing a third approach– Functional Data Analysis

(FDA)– which frames longitudinal datum as curves instead of individual measurements.
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Although its techniques relate to curve fitting, FDA does not explicitly focus on our interest

of curve dynamics (Ramsay, 1982; Ramsay and Dalzell, 1991; James and Sugar, 2003; Yao

et al., 2005; Thompson and Rosen, 2008).

There is clearly a vibrant and diverse field surrounding governing equations of dynamical

systems. However, as the complexities of these methodologies grow, so does their inappli-

cability to our case of extremely sparse data. After considering this research, we ultimately

opted to pursue the much simpler LLA procedure from which many of these ideas stem.

2.5 Specifying Population-level Curves

We generated two sets of four curves with distinct damping and frequencies in order to tease

apart their effects on curve estimation. The first set of four curves, curves A1-A4, all share

the same frequency parameter and differ in their damping parameters. We refer to these

as A Curves throughout the paper. The second set of four curves, curves B1-B4, all share

the same damping parameter and differ in their frequency parameters. We refer to these as

B Curves.

Curve A1 has the most damping, followed by curves A2, A3, and A4. B curves share the

same damping but differ in frequency. Curve B4 has the greatest frequency, followed by

curves B3, B2, and lastly, B1. Table 1 lists the exact damping and frequency parameters of

the eight true curves.

[Table 1 about here.]

2.6 Simulating Data

We created each curve to be characteristic of a distinct population, i, where i = 1, ..., 8. More

specifically, each curve represents a population-level governing equation of some theoretical

physiological system, such as the motivating example of glucose metabolism following an

OGTT. These governing equations are represented using a variation of the Damped Linear
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Oscillator given in Equation 5, where ηi and ζi are the distinct governing parameters for

population i. Time is given by t, and the the measurement of some theoretical chemical or

hormone is given by x.

We assumed 100 people are sampled from each population. We then simulated data for

each person, j (j = 1, ..., 100), by sampling a pre-specified number, K, of points from that

person’s population-level curve. In the case of three-point windows, K ranges from 4 to 14;

in the case of five-point windows, K ranges from 6 to 19.

Person-level data simulation required two stages. We first determined the time-points, t,

at which x values were to be simulated for all people. To mirror the real-world scenario

of limited budget and access to participants, we limited time-points of curve sampling to

0 ⩽ t ⩽ 7. These values were picked as all eight curves complete close to one oscillation

within this time-frame. The exact values of t were chosen such that the K time points were

equally spaced between the values of 0 and 7.

The second step was to simulate the x values at those points. For a simulation with K

sampled points, we denote tk the kth sampled time-point, where k = 1, ..., K. As previously

mentioned, we denote xijk the value of x at tk for person j from population i. The sampling

equation is given in Equation 5.

xijk = e
1
2
ζitkcos

(
tk

√
−ηi −

ζ2i
4

)
+ ϵijk.

ϵijk
iid∼ N(0, σ).

(5)

The σ term in Equation 5 reflects the amount of random measurement error and inter-

individual variation within a population (noise). For each tk, we simulated xijk both with

and without any noise. To simulate xijk with noise, we sample i.i.d ϵijk from a 0-centered

normal distribution with a pre-specified standard deviation 0 < σ ⩽ 1.9. This reflects the

more realistic case where individual variation from the population and measurement error

exist. To simulate xijk without noise, we set σ = 0. This reflects the purely theoretical case
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of both perfect measurement and perfect individual adherence to the population level curve.

In this case, all people within a population have identical data.

Throughout this paper we refer to the level of noise using the standard deviation of its

distribution. For example, ”noise with a standard deviation (SD) of 0.08” implies ϵijk
iid∼

N(µ = 0, σ = 0.08) and ”increasing noise” implies increasing σ. Although we refer to σ in

terms of its value, it is important to note its context in relation to the curve. The initial

amplitude of all eight curves is 1, meaning a σ of 0.08 is 8% of the initial amplitude. As the

curves are damped, this percentage becomes larger compared to later amplitudes–particularly

for more damped curves.

All data was generated independently. This does not reflect a real world scenario and will be

addressed in the discussion section. Besides this independence assumption, the structure of

the simulated data mimics the structure of the motivating SPRING study. We have assumed

each person has their data collected at K time points, which are equally spaced between

the beginning and end of the sampling period. Furthermore, data are collected for all people

within and between populations at the same time points. Given 100 people in a population

and 4 time-points per person, there would be 100 measurements at each time-point and 400

measurements total for the population. Note that unlike in the SPRING study, we do not

necessarily sample at the first and last points of the sampling period. Given the oscillating

nature of the curve and relatively arbitrariness of our sampling period, this should not affect

the conclusions.

2.7 Procedure of Curve Estimation through Local Linear Approximation

Each person had exactlyK sampled data points. The derivative approximations through LLA

were conducted within individuals, meaning no additional data across individuals was utilized

for this step. This resulted in first and second derivative approximations corresponding to

each internal (tk, xijk) data point for that person (recall the first and last data points do not
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have estimated derivatives for three-point LLA, and the first and last two data points do not

have estimated derivatives for five-point LLA).

Focusing on the example of three-point LLA, each person had (K − 2) distinct datum of

the form (tk, xijk,
d̂x
dt ijk

, ˆd2x
dt2 ijk

) following LLA. Next, this person-level data was pooled within

each population to create one dataset. For a population with 100 people, there was a total

of 100×(K−2) data points in the dataset. The linear regression outlined in Equation 1 was

performed on this dataset to estimate population-level parameters ηi and ζi.

It is important to again note the implications of using i.i.d data. We did not account for

correlation within each person’s data or between windows; further remarks on this choice

follow in the discussion.

2.8 Large Scale Simulations

2.8.1 Simulating data over increasing numbers of sampled points. Multiple large simula-

tions were conducted on all eight curves (curve parameters in Table 1). The first set held

noise constant with a standard deviation of either 0 (no noise) or of 0.08 as the number

of sampled points per person increased at 1-point increments from 4 to 14 for three-point

LLA or from 6 to 19 for five-point LLA. The value of 0.08 SD was chosen as it introduced

considerable noise without rendering the curves unrecoverable. A visualization of underlying

curves overlaid with sampled points having 0.08, 0.3, and 0.5 standard deviations of noise

present is given in the supplement (Figure A.1).

2.8.2 Simulating data over increasing levels of measurement variation. The second set

of simulations held the number of sampled points per person constant at either the lowest

possible value for LLA (4 points for three-point LLA or 6 points for five-point LLA) or at

25 sampled points per person as the SD of the noise term increased from 0 to 1.9 at 0.1

increments. The values of 4 and 6 points were selected as both result in two distinct points

with estimated derivatives per person after three-and five-point LLA. 25 points was chosen
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as it was a large enough number to represent a more heavily sampled curve, while still being

at the limit of clinical feasibility.

2.8.3 Simulating data over increasing LLA window size. A set of third simulations was

performed to briefly address the impact of LLA window size on estimation. We sampled 25

points per curve with noise standard deviation at 0, 0.08, or 0.6. For each noise and point

combination, we increased the window size from 3 to 19 points at intervals of 2 points. For

all above simulations, 100 replicates at each unique noise level, number of sampled points,

and LLA window size combination were performed.

2.9 Analysis of Curve Estimation

For each batch of replicates, the accuracy and precision of curve parameter estimators were

assessed using bias, Mean Squared Error (MSE), empirical Standard Error (SE), and the

Integrated Squared Difference (ISD) between the overall true and estimated curves. Equation

6 gives the calculation for the ISD, which is the difference between the true curve and the

estimated curve squared and integrated between the x-range endpoints of 0 and 7. We also

plotted estimated curves with the true curves for visual assessment.

ISD =

∫ 7

0

e 1
2
ζitcos

(
t

√
−ηi −

ζ2i
4

)
− e

1
2
ζ̂itcos

t

√
−η̂i −

ζ̂2i
4

2

dt. (6)

Note that for clarity and concision we do not include the MSE results directly in this paper.

However, figures and additional text are located in the supplement (B.1, B.3, C.3, C.9, D.1).

3. Results

The key results are presented in two parts. First, we report the case of increasing numbers

of sampled points and fixed measurement error. Second, we report the case of increasing

measurement error and a fixed number of sampled points. We report these results primarily of

three-point LLA, with a secondary focus on five-point LLA. Within each part, we first assess
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high-level success of curve estimation through visualizations of estimated curves against

true curves and through ISD. We follow this with analyses of parameter estimator bias

and precision. Note that since each population contains 100 sampled people, ”4 points per

person” is equivalent to ”400 points per curve” or ”population”. Following these key sections,

we briefly address increasing window size and fixed sampled points and measurement error.

It is important to briefly comment on the language we use to describe curve fit. Recall

that more negative damping and frequency parameters correspond to greater amounts of

damping and frequency in the curve, respectively. Throughout this paper we will comment on

the over/underestimation of the damping and frequency of the curve (where overestimation

implies there is too much frequency or damping present, and underestimation implies there is

too little), as opposed to the over/underestimation of the damping and frequency parameters.

We speculate that curves with greater damping more closely model dynamical systems of

more resilient populations, whereas curves with less damping more closely model those of

less resilient populations. There is less of an intuitive relationship between the frequency

parameter of a curve and resilience level of the population it models, but this characteristic

of the curve is still of great interest.

3.1 Increasing Number of Points Sampled with Fixed Measurement Error

3.1.1 Visualizations of Estimated Curves. For both noise standard deviations of 0 and

0.08, the curves estimated with 400 sampled points (4 points per person) had more damping

and much lower frequencies than the true curve (Figure 1). For all curves, the estimated

peaks and nadirs occurred at greater t values and were shallower than the true values. This

trend was amplified under sampling conditions with error compared to no error. However,

curves estimated using 600 and greater sampled points were similar under conditions with and

without error. As the number of points used to estimate the curve increased, the estimated

curve’s damping became accurate more quickly than its frequency. Curves with lower true
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frequencies, such as curve B1, were more accurately estimated at fewer sampled points

compared to their higher frequency counterparts. These trends were similar across all eight

curves.

Overall, qualitatively reasonable estimation was achieved for as few as six sampled points

using three-point LLA. Five-point LLA required significantly more points for such reasonable

estimation– Figures C.5 and C.6 in the supplement demonstrate that even at 12 points

sampled per person, the true curve had not been well estimated.

[Figure 1 about here.]

3.1.2 Accuracy. Figure 2 depicts bias and ISD of the estimated curves. In the exact

sampling case, the curves’ damping and frequencies were underestimated for all eight curves,

which corresponds to an overestimation of these two parameters. This underestimation of

damping was most severe for more damped curves but unaffected by curve frequencies. Sim-

ilarly, the underestimation of frequency was most severe for curves with greater frequencies

but unaffected by a curve’s damping. In all cases, damping and frequency bias decayed

exponentially to 0 as more points were sampled. Five-point LLA exhibited the same trend

but with slightly higher overall bias (Figure C.1 in supplement).

Under sampling conditions with error, the frequency of the true curve had an impact

on damping estimation, which was not true in the exact sampling case. The converse was

also somewhat true at greater sampled points–damping had a small impact on frequency

estimation. For all curves at few points, damping was overestimated and frequency was

underestimated (corresponding with underestimated damping parameters and overestimated

frequency parameters). As points increased, both curve characteristics became more accurate,

then began to be overestimated. The greater the damping or the lower the frequency of

the true curve, the greater the extent of damping and frequency overestimation. Five-point

LLA differed in the extent of overestimation– the amount of damping was almost never
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overestimated, and frequency was to a lesser extent. The other trends were comparable

between three-point and five-point LLA.

As the number of sampled points grew, the ISD decreased to 0̃ for all curves (Figure 2).

Curves with the highest frequencies and least damping had the highest ISD values, but

this difference shrunk as more points were sampled. The elbows of the ISD plots were at

approximately 6 points per person (±1 point per person). This suggests this number of

sampled points was a turning-point for goodness of the curve fit, which aligns with previous

observations. Interestingly, the ISD values for all curves were similar between the sampling

scenarios with and without noise. Five-point LLA showed comparable trends, but had slightly

higher ISD values overall (Figure C.2 in supplement)

Overall, curve recovery was relatively successful despite some parameter bias. This may

reflect not only the estimability of parameters in this design, but also its ability to identify

the two parameters from one another. Particularly without noise present, these results were

promising.

[Figure 2 about here.]

3.1.3 Precision. For curves estimated from points sampled with no noise, there is no

variance over the 100 iterations of the simulation at each point by design. We will not assess

standard error or MSE for this case.

For curves estimated with noise present, all curves shared similar trends in standard error

of damping parameter estimates (Figure B.2 in supplement). As expected, almost all eight

curves reached their maximum SE at 4 points per person. This peak varied by curve, but all

A curves ranged between peak values of ∼0.06 and 0.08, whereas B curves ranged between

∼0.02 to 0.06. As sampled points increased past five points per person, the damping standard

errors of the curves hovered around 0.01, where curves with more damping asymptoted at
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slightly higher standard errors. Evidence of this trend can be seen in the decreasing IQRs of

the boxplots in Figure 2.

The SE of frequency parameter estimates showed a different trend. Although all curves also

reached a local maximum SE value at 4 points per person, the SE of frequency estimates

increased overall linearly as sampled points increase. However, this occurred at a smaller

scale– the SE ranged from 0 to 0.03 for all curves. Curves with greater damping tended to

have higher SE values for both parameter estimates, whereas there was no clear trend in

variation with increasing frequency.

3.2 Increasing Noise over Fixed Number of Sampled Points

3.2.1 Visualizations of Estimated Curves. Figure 3 demonstrates none of the eight curves

estimated using 4 or 25 points per person with at least 0.1 standard deviations of noise

captured the true curve’s behavior. Curves estimated from both 4 and 25 points tended to

overestimate the damping at low noise values and underestimate it at high noise values. How-

ever, 4-point estimated curves had underestimated frequencies and 25-point curves had vastly

overestimated frequencies. The extent of over or underestimation in these characteristics grew

with the noise SD. Five point LLA was comparable, but this frequency overestimation was

less extreme (Figures C.11, C.12 in supplement)

[Figure 3 about here.]

3.2.2 Accuracy. For all 25-point estimated curves, initial increases in noise corresponded

to bias in the estimated damping parameter that first briefly dipped to negative values before

increasing to positive values ( 4). This meant the curves’ estimated damping moved from rel-

atively accurate, to overestimated, back to relatively accurate, and finally to underestimated.

The curves’ estimated frequencies under 25-point sampling did not share this fluctuation in

bias–the curve frequency was overestimated (i.e frequency parameters underestimated) as
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soon as noise was introduced, and then it continued to be increasingly overestimated before

the bias reached an asymptote around -20 for all curves. Estimates of more damped curves

had more extreme frequency and damping bias. Damping bias was unrelated to the frequency

of underlying curves, but curves with lower frequency exhibited more extreme frequency bias.

Bias in estimated damping was similar in 4-point curves as it was in 25 point curves,

although the overestimation was not as extreme. On the other hand, the frequency bias in

the 4-point case was dissimilar to that of the 25-point case. The scale for 4-point estimates

was much smaller (∼ 1
10

of the range), and the curves’ frequencies were consistently under-

estimated instead of overestimated. This bias was most extreme for true curves with greater

frequency and, to a lesser extent, curves with more damping. Five-point LLA showed again

similar trends. The main difference was its lower frequency bias in the 25-point case (Figure

C.7 in supplement)

Overall, the ISD increased with the noise standard deviation ( 4). Interestingly, the ISD

was slightly higher overall for the 25-point sampling case compared to the 4-point sampling

case, particularly at higher noise SD values. Curves with less damping had greater ISD values

for both 25 and 4-point sampling scenarios than curves with more damping. Compared with

higher frequency curves, curves with lower frequencies had slightly lower ISD values under

the 4-point sampling case, but nearly identical ISD values under the 25-point sampling case.

Thus, damping had an impact on ISD regardless of the number of points sampled, whereas

frequency only made a difference in cases of lower sampled points.

Another interesting observation was the difference in ISD at low noise levels. Under 4

sampled points, the ISD was greater than 0 when no noise was present, indicating the issue

in curve estimation here lay with its few sampled points. Under 25 sampled points, the ISD

started at 0 for all curves but the value for A curves quickly grew as noise SD reached 0.3.



18

The ISD under five-point LLA was slightly lower overall under its 6-point sampling case, but

otherwise comparable (Figure C.8 in supplement).

[Figure 4 about here.]

3.2.3 Precision. For all 4-point estimated curves, standard errors for frequency and damp-

ing estimates abruptly increased to an approximate plateau as noise was introduced (Figure

B.4 in supplement). Whereas the SE values for most curves had reached their plateau when

noise was at 0.1 SD, it took more noise (∼1.2 SD) for less damped curves to reach the

frequency SE plateau of ∼0.03, and for lower frequency curves to reach the damping SE

plateau of ∼0.06. These plateaus implied that despite growing noise, the variation of the

estimators stayed relatively constant.

All 25-point estimated curves required higher noise levels for the SE values of frequency

and damping estimates to begin leveling off, which occurred around SE values 0.5 and 0.05,

respectively. A key difference between this and the 4-point case was the presence of global

trends in SE even after the rate of change had slowed significantly. As noise continued to

grow, there was a slight overall decrease in the SE of the damping estimates and an overall

increase in that of the frequency estimates.

Five-point LLA had similar trends as three-point LLA, though its values were slightly lower

and the aforementioned global trends were not as apparent (Figure C.10 in supplement).

3.3 Increasing Window Size over Fixed Noise and Sampled Points

Under perfect measurement of 25 points per person, smaller window sizes resulted in less

biased measurements and smaller mean squared errors– both values were close to 0 for

damping and frequency parameter prediction at three-points per window. As window size

increased, both the damping and frequency of the curve became underestimated. The bias

was more extreme for more damped and higher frequency curves.
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Once noise SD increased to 0.08, the optimal window size increased to five-points per

window– all bias, ISD, and MSE values were closest to 0 under this condition. There was

some oscillation in the damping parameter bias for more damped or higher frequency curves,

and higher frequency curves also had more biased frequency estimations.

At a higher noise value of 0.6 SD, the optimal window size was more complex. Whereas

the curve frequency was extremely overestimated under a three-point window (bias < −10),

it achieved near-perfect frequency estimation under a seven-point window. As window size

continued to increase, the frequency became consistently underestimated. Unlike frequency,

the curves’ damping was estimated most accurately at three-point windows for more damped

curves. The damping of less damped curves was slightly overestimated at three-point windows

and slightly underestimated for all larger windows. Despite discrepancies between ideal

window sizes for damping and frequency estimation, the ISD reached its minimum (∼0.5)

for almost all curves at seven or nine point windows.

4. Discussion

We attempted to recover parameters of simulated governing equations under conditions of

varying sparsity, noise, and window size using LLA and known properties of the damped

linear oscillator. Because of the motivating issue of sparsity, we primarily considered three-

and-five point windows for simulations, which are the focus of discussion. It is clear that

care is needed in utilizing this technique of LLA for uncovering governing curve dynamics.

Although broadly robust under specific conditions (> 6 sampled points/person with no noise

or 10-12 sampled points/person with low noise in these simulations), this technique fails when

variation or sparsity is introduced absent a meticulous tailoring of window size, which may

be infeasible in sparse sampling scenarios.

Past a certain threshold of noise, all curves were estimated to have no damping and a

shared frequency parameter (∼-0.4 when 4 points were sampled or of ∼22 when 25 points
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per person were sampled under three-point LLA). Presence of noise was a major issue under

all simulations, but there were still differences in impact– for example when 25 points were

sampled per person, appreciable noise caused more extreme frequency overestimation under

three-point LLA compared with five-point LLA. This highlights the importance of thoughtful

window-size selection in addressing noise.

The problem of sparsely sampled data also had consequences– albeit less severe con-

sequences than that of unaddressed noise. Unsurprisingly, curve recovery was generally

unsuccessful at the lowest numbers of sampled points, even when noise was minimal-to-none.

When noise was present, sampling both too few and too many points led to bias in opposite

directions. This suggests more measurements are not necessarily better and a Goldilocks

range of accurate estimation may exist. The range for these simulations was approximately

9-11 points per person, but this is specific to the true curve parameters, noise present, and

window length. Finally, initial small increases in the number of sampled points had a large

impact on the accuracy of curve estimation, implying just one or two more measurements

per person makes a significant difference in later interpretation.

The precision analyses produced additional insight. The standard errors of parameter esti-

mations plateaued as noise increased in the case of 4-points sampled per person, supporting

the prior observation that beyond a certain threshold of noise, the performance of the LLA

procedure and results showed little change as noise continued to increase. An interesting

difference is with the case of 25-points sampled per person, in which standard errors for

frequency parameter estimation continued to increase with increasing noise. This in tandem

with the increasing SE of frequency (and less so, damping) estimation at high numbers

of sampled points add to this picture of volatility in estimation (particularly, frequency

estimation) in the case of high sampling frequency coupled with substantial noise.

Overall, both frequency and damping estimators were less accurate for more damped
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curves. Generally, the degree of damping of the true curves tended to have an impact on the

accuracy of frequency parameter estimation, but the converse was not always true. There

was less of a single and clear trend in the effect of true frequency on accuracy or precision

of frequency parameter estimation.

We acknowledge limitations with our work. One is our use of independently generated data.

As briefly mentioned, this would not be the case in any real-world scenario. This allowed

us to work with simpler relationships between points, windows, and simpler regressions, but

future work is needed to address dependence in data. We also only studied the case of equally-

spaced measurements. Randomly-spaced measurements unique to each participant might

better support a priori smoothing, which would open up other possibilities for estimating

derivatives. We leave this as more future work that could also inform sampling design or

alternative methodology.

A final limitation is our usage of the DLO to generate our data. Real-world biological

data may not be so well approximated with this model. Regardless, this usage of the DLO

has ample precedent, with Boker & Graham and Steele & Ferrer reporting the DLO to be

a flexible model that adequately fit their non-simulated data. Although we can’t speak on

applications to real data (yet), we did find some robustness to this technique in the context of

no or little noise and an adequate number of sampled points. The DLO was also beneficial in

its simplicity and flexibility. This allowed us to explore the impact of frequency and damping

parameters on curve recovery in-depth.

To lastly put this work in further context, our findings aligned with previous litera-

ture on certain key observations. Boker and Graham found the interval of time between

measurements an important factor in determining the level of bias present in parameter

estimates– a factor researchers should try to optimize (see Boker and Graham 1998 for this

methodology). In their 2002 paper, Boker and Nesselroade added insight on spacing. They
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found that when time between observations was short, added noise had more of an impact

on parameter bias. Although we focused on window size instead of data spacing and density,

the concepts are inherently linked. We similarly observed that the choice of LLA window size

is central to optimal estimation– as noise increases, larger window sizes become generally

more desirable with their smoother-like properties. Smaller window sizes pick up on more

nuance–including measurement error or individual variations–which makes population-level

estimation difficult. In our data, this resulted in overestimated frequencies (although the

damping estimation was less affected). Proper choice of window size is thus key in utilizing

LLA. However, window size options are extremely limited in the case of sparse data.

Our work also supported previous conclusions that LLA estimates can be relatively accu-

rate given enough sampled points, although we further explored its limitations in the context

of noise. Furthermore, we also found the frequency parameter generally more difficult to

estimate than the damping parameter (Boker and Graham, 1998; Boker and Nesselroade,

2002)

Our work also adds novelty through some departure from previous findings. Boker and

Nesselroade’s 2002 paper attempted recovering DLO parameters with only three measure-

ments per participant. They concluded that this technique relatively accurately recovered

curve parameters in this sparse-data scenario. We did not find this to be the case– we were

unable to recover the curve in the context of sparse data even in a low-to-no noise scenario,

let alone under conditions of moderate noise. Despite this similar goal, the aim of their work

also differed from ours. They explored both LLA and state-space embedding techniques in

the context of asynchronous curve phases and varying measurement intervals, whereas we

explored thorough design-based questions about LLA and the DLO in the context of sparsely

sampled curves with noise present, the characteristics of the curves LLA most successfully

recovers, and the limitations of LLA.
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Considering these severe impacts of sparsity and, in particular, noise, this paper serves as 

a cautionary tale. Along with raising questions, it also adds to existing dialogue in exploring 

how curve characteristics and window size impact curve recovery. Future work is needed to 

either develop methodologies that can successfully perform this task without requiring ample 

and/or low-noise data, or to define limitations when these tasks are not possible. Future work 

is also needed to explore how to best design and leverage data collection when that collection 

is limited– for example, sampling at the most informative locations of the curve (ex: valleys, 

peaks).

These findings also shed light on resilience analysis in the context of SPRING. Both 

noisiness and low data interfered with differentiation between curves and thus potential 

classification of distinct populations. A protocol for dealing with any excess noise in the 

data is needed for LLA to be viable. Similarly, research is needed to assess levels of variation 

coming from individual versus population level differences, and how these are obscured by 

the amount of noise present. This will be a crucial future stage of research– attempting to 

cluster individuals by their governing equations to identify resilience sub-populations. We 

look forward to future discussion.
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Figure 1. Each plot displays one the eight true curves (black) and its corresponding curves
estimated using three-point LLA across 4, 6, 10, or 12 points per person (blue, yellow, red,
green). In sub-figure (A) no noise was added to points. In sub-figure (B) noise drawn from
N(0, 0.08) was added to the points.
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Figure 2. 12 sub-figures depict distributions of accuracy metrics of the 8 estimated curves
as the number of sampled points/person increases. The first row depicts the bias of each
estimated curve’s damping parameter, the second row depicts the bias of its estimated
frequency parameter, and the third row depicts the ISD between the estimated and true
curve. Plots in the first and second column evaluate curve estimations from points with no
noise added. Plots in the third and fourth columns evaluate curve estimations from points
sampled with added noise ∼ N(0, 0.08). The first and third columns display A curves, and
the second and fourth display B curves.
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Figure 3. Each plot displays one the eight true curves (black) and its corresponding curves
estimated using three-point LLA on points with added noise. The standard deviation of the
added-noise distribution is 0.1, 0.4, and 0.8 for blue, yellow, and red curves, respectively. In
sub-figure (A) 4 point were sampled per person. In sub-figure (B) 25 points were sampled
per person.
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Figure 4. 12 sub-figures depict distributions of accuracy metrics of the 8 estimated curves
as the standard deviation of the noise distribution increases. The first row depicts the bias of
each estimated curve’s damping parameter, the second row depicts the bias of its estimated
frequency parameter, and the third row depicts the ISD between the estimated and true
curve. Plots in the first and second column evaluate curve estimations from 4 points/person.
Plots in the third and fourth columns evaluate curve estimations from 25 points/person. The
first and third columns display A curves, and the second and fourth display B curves.
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Curve A ϕ ζ η

A1 1 0 -0.6 -2.0
A2 1 0 -0.4 -2.0
A3 1 0 -0.2 -2.0
A4 1 0 -0.1 -2.0
B1 1 0 -0.6 -1.0
B2 1 0 -0.6 -1.5
B3 1 0 -0.6 -2.0
B4 1 0 -0.6 -2.5

Table 1
The labels and true parameters of the eight damped linear oscillator curves estimated throughout this paper

.




